EXPERIMENTAL EVALUATION OF SHUKRAL ACTIVITY (SPERMATOGENIC ACTIVITY) OF SARIVA (HEMIDESMUS INDICUS R.BR)

Dr Shilpa Bheemrao. Hosmani1, Dr Sanjeev L. Athani2, Dr Siddanna B. Chougala3

PG Scholar dept of Dravyaguna1, Professor, PG studies dept of Dravyaguna2, Reader PG studies dept of Dravyaguna3. Shri Jagadguru Gurusidheshwar Co-Operative Society’s Ayurvedic Medical College Ghataprabha, Karnataka.

Abstract
Background-Ayurveda emphasized that Plants play a vital role in curing the disease and maintenance of health. Due to lifestyle modification, use of pesticide sprinkled food grains, fruits and vegetables, exposure to environmental chemicals, xenobiotics have affected physiological, mental health of reproductive system of individuals. It is believed and proved that exposure to environmental estrogen, will end up in decreased sperm count and motility and male infertility. According to World Health Organization about 80% of couples are infertile among which male contribute about 30% due to lifestyles changes, food with high pesticide content and environment estrogen exposures. So the present study was intended to see the efficacy of Sariva Moola Phanta (Infusion) in improving sperm count and motility. Objective: The present study was aimed to experimentally evaluate the Shukrala activity (Spermatogenic activity) of Sariva Moola Phanta (Hemidesmus indicus R.Br) in male Wistar Albino rats.

Materials and methods- Experimental study was designed for period of 30 days. 24 male adult healthy wistar rats were divided into 4 groups. Group A was received normal food and water; Group B was treated with Estradiol 500 gm/kg body weight intramuscularly for 14 consecutive days and scarified on 15th day; Group C treated with Estradiol 500 gm/kg body weight intramuscularly for 14 consecutive days followed by Sariva moola Phanta 8.64ml/kg body weight orally for further 15 days; and Group D was treated with Estradiol 500 gm/kg body weight intramuscularly for 14 consecutive days and left untreated for further 15 days. Result – Sariva has significant results in Shukral activity in terms of increasing sperm count, sperm motility and serum testosterone. Conclusion-The present experimental study revealed that, Sariva has got significant effect on improving sperm count, sperm motility and increasing testosterone level as compared to auto recovery group, thus proved Shukral activity.

Key words-Ayurveda, Estradiol, Sariva, spermatogenic, environmental estrogen, Xenobiotics.
Introduction
Ayurveda emphasized that Plants play a vital role in curing the disease and maintenance of health. But now a days because of lifestyle modification, use of pesticide sprinkled food grains, fruits and vegetables, and exposure to environmental chemicals, xenobiotics directly and indirectly are affecting the physiology of all the systems including reproductive system, which has affected physiological, mental health of reproductive system of individuals, which tend to cause Oligo-Asthenos-Azoospermia which are one of the leading cause for male infertility. It is believed and proved that exposure to environmental estrogen will end up in decreased sperm count and motility and male infertility\(^1\). In the last 100 yrs the average sperm count has become 50-60 million/ml from the previous average 110-120 million/ml. Sariva(Hemidesmus indicus R.Br) being herbal and safe to use and it is having properties like Madhur (sweet) rasa, Sheeta virya (cold potency) which directly acts on Shukravaha Srotas(reproductive system) and acts as Shukrala. So the present study was intended to see the efficacy of Sariva Moola Phanta in improving sperm count and motility.

Materials and methods
Collection and authentication of Sariva and Estradiol
Drug Sariva (Hemidesmus indicus R.Br) was collected from college herbal garden; authentication, preliminary phytochemical and analytical tests were carried out at AYUSH approved Central Research laboratory, Shri BMK Ayurveda Mahavidyalaya Shahapur Belagavi, Karnataka, India. Sariva Moola Phanta was prepared freshly using 1:4 ratio (Sariva moola churna: portable water)
Estradiol was procured from Sigma Aldrich Company USA, from Venkatesh enterprises Dharawad. Estradiol was prepared freshly daily using 1:9 ratio of ethanol and olive oil to make solution and dispensing volume was 0.1ml intramuscularly.

Procurement of animals and quarantine
24 male Wistar albino rats weighing 200-250 gm were taken for study, and 7 days acclimatization was given with ambient climatic condition, and maintained throughout the
experiment. Experimental procedures were approved by the institutional ethical committee (BMK/IAEC/RES14/09/2015) held at KLE’S Shri B M Kankanwadi Ayurveda Mahavidyalaya Shahapur Belgavi Karnataka

Grouping: The acclimatized rats were divided into 4 groups (6 rats in each group). Control, Disease induced Treatment and Natural recovery. To identify animals marking has been done on 1) head, 2) neck, 3) body, 4) tail, 5) right hind limb and 6) left hind limb

Total number of animals: 24
Duration of study: 30 days

Dose of Sariva (Hemidesmus indicus R.Br) Phanta in animals: 8.64 ml/kg body weight

Blood collection: retro orbital

Organ tissue collected: Epididymis and testis (kept in 10% formalin).

Experimental Study:

Group A (Control) received normal food and water and sacrificed on 30th day to see the normal sperm parameters. Group B, C and D Estradiol 500µgm /kg body weight was administered intramuscularly for 14 days along with normal food and water. Group B was sacrificed on 15th day to see the extent of testicular toxicity. Group C was given Sariva (Hemidesmus indicus R.Br) Moola Phanta orally at a dose of 8.64 ml /kg body weight over a period of next 15 days, after 14 days of Estradiol administration, with normal food and water and sacrificed on 30th day to see the efficacy of drug Sariva (Hemidesmus indicus R.Br). Group D was left untreated for further 15 days sacrificed on 30th day to see is there any natural (auto) recovery process.
Table no1: Showing Experimental protocol

<table>
<thead>
<tr>
<th>Group</th>
<th>Drug</th>
<th>Dose</th>
<th>Route of administration</th>
<th>Duration</th>
<th>Sacrifice</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Group A (Control)</td>
<td>Normal food and water</td>
<td>Oral</td>
<td>30 days</td>
<td>30th day</td>
<td>Normal parameter</td>
<td></td>
</tr>
<tr>
<td>Group B (Diseased)</td>
<td>Estradiol</td>
<td>500µgm /kg body weight</td>
<td>IM</td>
<td>14 days</td>
<td>15th day</td>
<td>Extent of toxicity</td>
</tr>
<tr>
<td>Group C (Treated)</td>
<td>Estradiol and Sariva</td>
<td>500µgm /kg body weight 8.64 ml /kg body weight</td>
<td>IM Oral</td>
<td>14 days</td>
<td>30th day</td>
<td>Protecting action</td>
</tr>
<tr>
<td>Group D (Natural)</td>
<td>Estradiol</td>
<td>500µgm /kg body weight</td>
<td>IM</td>
<td>14 days</td>
<td>30th day</td>
<td>Natural recovery</td>
</tr>
</tbody>
</table>

Parameters of experimental study

- General observation- Animals of all groups were observed for their food and water intake, general toxicity, body weight throughout the experimental study.

- Biochemical investigations- Blood was collected in plain vial and subjected for performing biochemical parameter like serum Testosterone.

On 15th day group B anesthetized using high dose of di-ethyle ether and blood was drawn through retro-orbital region by pricking micro capillary tube number 100 mm (Borocilicate glass with both end open) and collected in labeled plain vials. Blood was sent to Jeevan diagnostic center Belagavi Karnataka, for biochemical investigations. Similarly group A, C and D were anesthetized and blood was collected on 30th day.

Subjective parameters-Weight of testis, sperm count and motility

Histopathological investigations-

Testis was collected immediately after anesthetized by diethyl ether then taken for dissection. Cleaned off extraneous tissue and transferred to 10% formalin solution in separate labeled containers and sent to Jeevan diagnostic center Belagavi for histopathological study.

Method for epididymal sperm count and motility-

The epididymis was dissected out for all animals, caudal part of it was cut
and tubules were dispersed into media distilled water in Petri dish that was labeled with corresponding animal code. Petri dish was kept for 10 min in room temperature to allow the sperm to disperse. The supernatant containing sperm was collected 10µl was put on clean slide which was mounted on, analyzed for motility analysis. Sperm count was performed manually by using haemocytometer.

Results

Phytochemical and analytical study of Sariva root has shown results are within the normal standard limits. The observations made in this animal experimental study were as follows –

Weight of animals: - Body weight of all animal was recorded for every 15th day with the help of electronic weighing machine and expressed in terms of grams.

Table no 2: Illustrate body weight of animal

<table>
<thead>
<tr>
<th>Group</th>
<th>Day 1</th>
<th>Day 15</th>
<th>Day 30</th>
</tr>
</thead>
<tbody>
<tr>
<td>Group A (Control)</td>
<td>264.3±21.71</td>
<td>264.8±20.25</td>
<td>283.5±16.74</td>
</tr>
<tr>
<td>Group B (Disease induced)</td>
<td>236.3±5.9</td>
<td>222.1±5.19</td>
<td>-</td>
</tr>
<tr>
<td>Group C (Treated with Sariva Moola)</td>
<td>251.6±15.16</td>
<td>228.3±13.79</td>
<td>260.6±11.06</td>
</tr>
<tr>
<td>Group D (Auto recovery)</td>
<td>219.5±16.7</td>
<td>205.3±10.87</td>
<td>246.3±16.6s</td>
</tr>
</tbody>
</table>

Sperm count: - Sperm count was done on the last day of experiment as it was necessary to scarify the animals. There was after dissecting the animal epididymis was separated from testes and epididymal sperm were collected in media 99 which was specially prepared and pH was maintained between7 to 7.5 for viability of sperms.

Sperm motility: - Sperm motility was calculated at the end of experiment after sacrificing animals by collecting epididymal sperms. In sperm motility RLP, SLP, NP and Immotile was observed.

Sr. Testosterone: -Sr. Testosterone was done at the end of the experiment before sacrificing animal,blood was collected from retro-orbital plexus.
Table No- 3: Illustrating results

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Normal (Control)</th>
<th>Estradiol (Diseased)</th>
<th>Estradiol + Sariva(Treated)</th>
<th>Estradiol (Auto recovery)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wt of testis in gms</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rt</td>
<td>1.54±0.05</td>
<td>0.61±0.13</td>
<td>0.5 ± 0.22*</td>
<td>0.57±0.17</td>
</tr>
<tr>
<td>Lt</td>
<td>1.54±0.05</td>
<td>0.6±0.17</td>
<td>0.62±0.20*</td>
<td>0.54±0.3</td>
</tr>
<tr>
<td>Wt of epididymis in gms</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rt</td>
<td>0.27±0.07</td>
<td>0.08±0.02</td>
<td>0.1±0.02*</td>
<td>0.11±0.06</td>
</tr>
<tr>
<td>Lt</td>
<td>0.28±0.07</td>
<td>0.08±0.02</td>
<td>0.22±0.3*</td>
<td>0.23±0.19</td>
</tr>
<tr>
<td>Sperm count</td>
<td>50.3±37.4</td>
<td>28.6±19.5</td>
<td>1.6±0.7*</td>
<td>NIL</td>
</tr>
<tr>
<td>Rapid linear progress</td>
<td>9.5±13.7</td>
<td>6.6±23.9</td>
<td>2.6±1.3*</td>
<td>NIL</td>
</tr>
<tr>
<td>Sluggish linear progress</td>
<td>6.8±8.1</td>
<td>9.8±9.2</td>
<td>1.8±1.22*</td>
<td>NIL</td>
</tr>
<tr>
<td>Non progressive</td>
<td>13±10.1</td>
<td>22.33±18.73</td>
<td>46.3±36.08</td>
<td>NIL</td>
</tr>
<tr>
<td>Immotile</td>
<td>54±33.85</td>
<td>59.5±37.6</td>
<td>49.16±38.11</td>
<td>NIL</td>
</tr>
<tr>
<td>Serum testosterone in ng/dl</td>
<td>5.8±4.6</td>
<td>0.6±0.12</td>
<td>1.8±0.7**</td>
<td>0.14±0.04</td>
</tr>
</tbody>
</table>

*Significance at the level of 0.05, ** Highly significant at the level of 0.001

Histopathology of testes:

Testes were removed after sacrificing animals and were processed for histopathology.

In the control group testis section showed normal histological texture. Diameter of seminiferous tubules varied within range. Leydig cells are normal in size germinal epithelium appears to be normal with normal epithelial height, interstitial connective tissue and no germ cell death. Spermatogenesis was normal and spermatogenic index 6.

In Estradiol treated groups Leydig cells appear to be normal. There was mild to moderate distortion and congestion of testis, germinal epithelium, with decreased epithelial height. Reduction in seminiferous tubule diameter. There also noted occasional presence of multinucleated germ cells and also germ cell death with normal interstitial connective tissue. Decrease in spermatogenesis and spermatogenic index was noted.

In Sariva treated group there was mild changes in tube diameter, mild congestion in testis architecture, germinal epithelium as a result of Estradiol treatment, but spermatogenesis was increased and spermatogenic index was 4(presence of spermatogonia, spermatocytes and...
early spermatid present in normal number with fewer than 5 late spermatid per tubule)

Table no 4: Illustrating Histopathology of testis

| Control group | Disease group 20 X | Treatment group 20X | Auto recovery group 20X |

DISCUSSION

Infertility is a burning issue in present period in spite of several advancements in the field of advanced medical inventions and interventions. About 30% of the burden is contributed by male causes. The leading causes are food habits, lifestyle modification, and exposure to environmental hazards which leads to Oligo-Asthenoa-Zoospermia, which is increasing at an alarming rate. For these conditions, synthetic and hormonal correction treatments are themselves effective in managing the condition but not without setbacks. Estradiol is the most potent estrogen hormone which is derived after aromatization of testosterone. This induces testicular toxicity by means of increased apoptosis leading to hampered spermatogenesis thus resulting in Oligo-Astheno-Azoospermia (Effect of Eurycoma longifolia in Estradiol treated spermatogenesis).

Discussion on results

The histopathological study...
revealed that Sariva (Hemidesmus indicus R.Br) treated group has shown presence of sperm cells after 30 days, where as the auto recovery group showed no sperm cells after inducing toxicity. Spermatogenic index was calculated for the assessment of the stage of spermatogenesis. And the result was statistically significant in improving sperm cells (p<0.05) after inducing toxicity.

Sariva treated group has shown significantly increase in sperm count (mean score **1.6±0.7**), good improvement in rapid linear progress (RLP) (mean score **2.6±1.3**), sluggish linear progress (SLP) (mean score **1.8±1.22**), non progressive (NP) (mean score **46.3±36.08**), immotile sperm cells (mean score **49.16±38.11**) after 30 days, whereas auto recovery group showed NIL results after inducing toxicity.

Serum testosterone in Sariva treated group has shown statistically significant result the mean score, compared with control group **5.8±4.6**, was decreased to **0.6±0.1** in diseased group and in auto recovery group **0.14±0.04**, but increased with **1.08±0.7** in Sariva treated group.

There was no significant changes occurred in body weight and Weight of testis of the animals during the experimental study and results are statistically insignificant. Weight of epididymis of treatment group was increased in Sariva treated group (group C) and it was statistically significant.

CONCLUSION

The present experimental study revealed that, Sariva has got significant effect on improving sperm count, sperm motility and increasing testosterone level as compared to auto recovery group, thus proved Shukral activity.

Reference

3. Bhavamishra. Bhavaprakash nighantu, commentary by Proff K.C.Chunekar,
late Dr G.S. Pandey editor. Varanasi choukambha surabharati academy 2010. Guduchyadi varga p-411

Corresponding author:
Dr Sanjeev L. Athani
Professor, PG studies dept of Dravyaguna², Reader PG studies dept of Dravyaguna³. Shri Jagadguru Gurusidheshwar Co-Operative Society’s Ayurvedic Medical College Ghataprabha, Karnataka
Email: pratisanju@gmail.com

Source of Support: NIL